180 Degree Consulting There Was an Error While Uploading the File. Error Code: 7
Program to calculate the value of sin(x) and cos(x) using Expansion
Given a value of angle, you need to calculate Sin and Cos values respective to information technology.
For sin function
Examples:
Input : 90 Output : 1
C++
#include <iostream>
#include <math.h>
using namespace std;
void cal_sin( float n)
{
float accuracy = 0.0001, denominator, sinx, sinval;
n = n * (3.142 / 180.0);
float x1 = n;
sinx = due north;
sinval = sin (north);
int i = 1;
do
{
denominator = 2 * i * (2 * i + 1);
x1 = -x1 * due north * n / denominator;
sinx = sinx + x1;
i = i + 1;
} while (accuracy <= fabs (sinval - sinx));
cout << sinx;
}
int master()
{
float north = xc;
cal_sin(n);
return 0;
}
Java
import static java.lang.Math.sin;
form GFG {
static void cal_sin( bladder n)
{
float accuracy = ( float ) 0.0001 , denominator, sinx, sinval;
north = n * ( bladder )( iii.142 / 180.0 );
bladder x1 = due north;
sinx = n;
sinval = ( bladder )sin(due north);
int i = 1 ;
do
{
denominator = two * i * ( two * i + 1 );
x1 = -x1 * n * n / denominator;
sinx = sinx + x1;
i = i + one ;
} while (accuracy <= sinval - sinx);
System.out.println(sinx);
}
public static void master(Cord[] args) {
float n = 90 ;
cal_sin(n);
}
}
Python3
import math;
def cal_sin(due north):
accuracy = 0.0001 ;
north = north * ( 3.142 / 180.0 );
x1 = n;
sinx = n;
sinval = math.sin(n);
i = 1 ;
while ( True ):
denominator = 2 * i * ( 2 * i + 1 );
x1 = - x1 * n * n / denominator;
sinx = sinx + x1;
i = i + 1 ;
if (accuracy < = abs (sinval - sinx)):
intermission ;
print ( circular (sinx));
north = ninety ;
cal_sin(due north);
C#
using Organisation;
class GFG
{
static void cal_sin( float n)
{
bladder accuracy = ( float ) 0.0001,
denominator, sinx, sinval;
n = north * ( float )(three.142 / 180.0);
float x1 = n;
sinx = due north;
sinval = ( float )Math.Sin(northward);
int i = one;
practise
{
denominator = 2 * i * (2 * i + 1);
x1 = -x1 * n * north / denominator;
sinx = sinx + x1;
i = i + 1;
} while (accuracy <= sinval - sinx);
Panel.WriteLine(sinx);
}
static public void Primary ()
{
float n = 90;
cal_sin(n);
}
}
PHP
<?php
function cal_sin( $n )
{
$accuracy = 0.0001;
$northward = $due north * (3.142 / 180.0);
$x1 = $n ;
$sinx = $north ;
$sinval = sin( $n );
$i = 1;
do
{
$denominator = two * $i * (2 * $i + one);
$x1 = - $x1 * $n * $n / $denominator ;
$sinx = $sinx + $x1 ;
$i = $i + one;
} while ( $accurateness <= abs ( $sinval - $sinx ));
echo round ( $sinx );
}
$north = 90;
cal_sin( $n );
?>
Javascript
<script>
role cal_sin(n) {
var accuracy = 0.0001, denominator, sinx, sinval;
north = n * (iii.142 / 180.0);
var x1 = due north;
sinx = n;
sinval = Math.sin(northward);
var i = one;
do {
denominator = 2 * i * (2 * i + 1);
x1 = -x1 * n * n / denominator;
sinx = (sinx + x1);
i = i + i;
} while (accurateness <= sinval - sinx);
document.write(sinx.toFixed(0));
}
var n = 90;
cal_sin(due north);
</script>
Output:
1
For cos function
Examples:
Input : thirty Output : 0.86602
C++
#include <iostream>
#include <math.h>
using namespace std;
void cal_cos( float northward)
{
float accurateness = 0.0001, x1, denominator, cosx, cosval;
n = n * (three.142 / 180.0);
x1 = 1;
cosx = x1;
cosval = cos (north);
int i = 1;
do
{
denominator = 2 * i * (2 * i - one);
x1 = -x1 * n * n / denominator;
cosx = cosx + x1;
i = i + 1;
} while (accuracy <= fabs (cosval - cosx));
cout << cosx;
}
int main()
{
bladder n = 30;
cal_cos(n);
}
Coffee
import static java.lang.Math.cos;
class GFG {
static void cal_cos( float north) {
float accuracy = ( float ) 0.0001 , x1, denominator, cosx, cosval;
north = n * ( float ) ( iii.142 / 180.0 );
x1 = 1 ;
cosx = x1;
cosval = ( float ) cos(due north);
int i = 1 ;
practise {
denominator = 2 * i * ( ii * i - 1 );
x1 = -x1 * n * n / denominator;
cosx = cosx + x1;
i = i + i ;
}
while (accurateness <= cosval - cosx);
Organisation.out.println(cosx);
}
public static void main(String[] args) {
float n = 30 ;
cal_cos(northward);
}
}
Python3
from math import fabs, cos
def cal_cos(n):
accuracy = 0.0001
due north = n * ( 3.142 / 180.0 )
x1 = 1
cosx = x1
cosval = cos(n)
i = 1
denominator = two * i * ( two * i - ane )
x1 = - x1 * n * n / denominator
cosx = cosx + x1
i = i + 1
while (accuracy < = fabs(cosval - cosx)):
denominator = ii * i * ( 2 * i - 1 )
x1 = - x1 * n * n / denominator
cosx = cosx + x1
i = i + one
print ( '{0:.6}' . format (cosx))
if __name__ = = '__main__' :
n = 30
cal_cos(due north)
C#
using Organisation;
class GFG {
static void cal_cos( float northward) {
bladder accurateness = ( float ) 0.0001, x1, denominator, cosx, cosval;
n = n * ( bladder ) (three.142 / 180.0);
x1 = ane;
cosx = x1;
cosval = ( bladder ) Math.Cos(due north);
int i = one;
practise {
denominator = two * i * (two * i - ane);
x1 = -x1 * n * northward / denominator;
cosx = cosx + x1;
i = i + 1;
}
while (accurateness <= cosval - cosx);
Console.WriteLine(cosx);
}
static void Main() {
float north = 30;
cal_cos(due north);
}
}
PHP
<?php
function cal_cos( $n )
{
$accuracy = 0.0001;
$n = $n * (iii.142 / 180.0);
$x1 = ane;
$cosx = $x1 ;
$cosval = cos ( $due north );
$i = 1;
do
{
$denominator = 2 * $i * (two * $i - 1);
$x1 = - $x1 * $due north * $northward / $denominator ;
$cosx = $cosx + $x1 ;
$i = $i + i;
} while ( $accuracy <= abs ( $cosval - $cosx ));
echo circular ( $cosx , 6);
}
$due north = 30;
cal_cos( $north );
?>
Javascript
<script>
part cal_cos(n)
{
permit accurateness = 0.0001, x1, denominator, cosx, cosval;
due north = n * (3.142 / 180.0);
x1 = ane;
cosx = x1;
cosval = Math.cos(n);
allow i = one;
do
{
denominator = 2 * i * (2 * i - ane);
x1 = -x1 * n * n / denominator;
cosx = cosx + x1;
i = i + 1;
} while (accurateness <= Math.abs(cosval - cosx));
document.write(cosx.toFixed(v));
}
let north = 30;
cal_cos(n);
</script>
Output:
0.86602
This article is contributed by Sakshi Tiwari. If you like GeeksforGeeks(Nosotros know yous do!) and would similar to contribute, yous tin can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. Run across your article appearing on the GeeksforGeeks main folio and assistance other Geeks.
Please write comments if yous find anything incorrect, or y'all want to share more information near the topic discussed in a higher place.
Source: https://www.geeksforgeeks.org/program-to-calculate-the-value-of-sinx-and-cosx-using-expansion/
Belum ada Komentar untuk "180 Degree Consulting There Was an Error While Uploading the File. Error Code: 7"
Posting Komentar